589 research outputs found

    Prospective evaluation of multiplicative hybrid earthquake forecasting models in California

    Get PDF
    The Regional Earthquake Likelihood Models (RELM) experiment, conducted within the Collaboratory for the Study of Earthquake Predictability (CSEP), showed that the smoothed seismicity (HKJ) model by Helmstetter et al. was the most informative time-independent earthquake model in California during the 2006–2010 evaluation period. The diversity of competing forecast hypotheses and geophysical data sets used in RELM was suitable for combining multiple models that could provide more informative earthquake forecasts than HKJ. Thus, Rhoades et al. created multiplicative hybrid models that involve the HKJ model as a baseline and one or more conjugate models. In retrospective evaluations, some hybrid models showed significant information gains over the HKJ forecast. Here, we prospectively assess the predictive skills of 16 hybrids and 6 original RELM forecasts at a 0.05 significance level, using a suite of traditional and new CSEP tests that rely on a Poisson and a binary likelihood function. In addition, we include consistency test results at a Bonferroni-adjusted significance level of 0.025 to address the problem of multiple tests. Furthermore, we compare the performance of each forecast to that of HKJ. The evaluation data set contains 40 target events recorded within the CSEP California testing region from 2011 January 1 to 2020 December 31, including the 2016 Hawthorne earthquake swarm in southwestern Nevada and the 2019 Ridgecrest sequence. Consistency test results show that most forecasting models overestimate the number of earthquakes and struggle to explain the spatial distribution of epicenters, especially in the case of seismicity clusters. The binary likelihood function significantly reduces the sensitivity of spatial log-likelihood scores to clustering, however; most models still fail to adequately describe spatial earthquake patterns. Contrary to retrospective analyses, our prospective test results show that none of the models are significantly more informative than the HKJ benchmark forecast, which we interpret to be due to temporal instabilities in the fit that forms hybrids. These results suggest that smoothing high-resolution, small earthquake data remains a robust method for forecasting moderate-to-large earthquakes over a period of 5–15 yr in California.This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 821115, Real-time earthquake rIsk reduction for a reSilient Europe (RISE), http://www.rise-eu.org). Additionally, this research was supported by the Southern California Earthquake Center (contribution no. 11011). SCEC is funded by NSF Cooperative agreement EAR-1600087 and USGS Cooperative agreement G17AC00047

    Immobilization of catalase via adsorption into natural and modified active carbon obtained from walnut in various methods

    Get PDF
    In the present work, the immobilization of catalase into natural active carbon and active carbon modified by hydrochloric acid was carried out. In the experimental section, the effects of pH, ionic strength andreaction temperature were chosen as parameters, with experiments performed in batch system. For the optimization of immobilization procedure, values of kinetic parameters were evaluated. It was observedthat storage and operational stabilities of the enzyme increased with immobilization. The results obtained from experiments showed that active carbon is a valuable support for the adsorption of enzymes

    The decay of quadrupole-octupole 1−1^- states in 40^{40}Ca and 140^{140}Ce

    Full text link
    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E1E1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ\gamma-decay behavior of candidates for the (21+⊗31−)1−(2_1^+\otimes 3_1^-)_{1^-} state in the doubly-magic nucleus 40^{40}Ca and in the heavier and semi-magic nucleus 140^{140}Ce is investigated. Methods: (γ⃗,γ′)(\vec{\gamma},\gamma') experiments have been carried out at the High Intensity γ\gamma-ray Source (HIγ{\gamma}S) facility in combination with the high-efficiency γ\gamma-ray spectroscopy setup γ3\gamma^3 consisting of HPGe and LaBr3_3 detectors. The setup enables the acquisition of γ\gamma-γ\gamma coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40^{40}Ca the decay into the 31−3^-_1 state was observed, while for 140^{140}Ce the direct decays into the 21+2^+_1 and the 02+0^+_2 state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N=82N=82 isotones. In addition, negative parities for two J=1J=1 states in 44^{44}Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 11−1^-_1 excitation in the light-to-medium-mass nucleus 40^{40}Ca as well as in the stable even-even N=82N=82 nuclei.Comment: 11 pages, 6 figures, as accepted in Phys. Rev.

    Kabul Times (April 11, 1964, vol. 3, no. 37)

    Get PDF
    High-resolution photon scattering experiments have been performed on the nucleus 45Sc at the Darmstadt superconducting electron accelerator S-DALINAC using bremsstrahlung beams with end point energies of 5.0 and 7.0MeV. Energies, absolute cross-sections and decay widths of 50 states, most of them previously unknown, have been determined. The results are compared to (γ,γ′ \gamma{^\prime}) experiments on the neighbouring closed proton shell isotope 44Ca

    Fragmentation and systematics of the Pygmy Dipole Resonance in the stable N=82 isotones

    Full text link
    The low-lying electric dipole (E1) strength in the semi-magic nucleus 136Xe has been measured which finalizes the systematic survey to investigate the so-called pygmy dipole resonance (PDR) in all stable even N=82 isotones with the method of nuclear resonance fluorescence using real photons in the entrance channel. In all cases, a fragmented resonance-like structure of E1 strength is observed in the energy region 5 MeV to 8 MeV. An analysis of the fragmentation of the strength reveals that the degree of fragmentation decreases towards the proton-deficient isotones while the total integrated strength increases indicating a dependence of the total strength on the neutron-to-proton ratio. The experimental results are compared to microscopic calculations within the quasi-particle phonon model (QPM). The calculation includes complex configurations of up to three phonons and is able to reproduce also the fragmentation of the E1 strength which allows to draw conclusions on the damping of the PDR. Calculations and experimental data are in good agreement in the degree of fragmentation and also in the integrated strength if the sensitivity limit of the experiments is taken into account

    Spontaneous Emergence of Persistent Spin Helix from Homogeneous Spin Polarization

    Full text link
    We demonstrate that a homogeneous spin polarization in one-dimensional structures of finite length in the presence of Bychkov-Rashba spin-orbit coupling decays spontaneously toward a persistent spin helix. The analysis of formation of spin helical state is presented within a novel approach based on a mapping of spin drift-diffusion equations into a heat equation for a complex field. Such a strikingly different and simple method allows generating robust spin structures whose properties can be tuned by the strength of the spin orbit interaction and/or structure's length. We generalize our results for two-dimensional case predicting formation of persistent spin helix in two-dimensional channels from homogeneous spin polarization

    Parity assignments in 172,174Yb using polarized photons and the K quantum number in rare earth nuclei

    Full text link
    The 100 % polarized photon beam at the High Intensity gamma-ray Source (HIgS) at Duke University has been used to determine the parity of six dipole excitations between 2.9 and 3.6 MeV in the deformed nuclei 172,174 Yb in photon scattering (g,g') experiments. The measured parities are compared with previous assignments based on the K quantum number that had been assigned in Nuclear Resonance Fluorescence (NRF) experiments by using the Alaga rules. A systematic survey of the relation between gamma-decay branching ratios and parity quantum numbers is given for the rare earth nuclei.Comment: 5 pages, 6 figures, to be published in Phys. Rev.

    Multilinear Wavelets: A Statistical Shape Space for Human Faces

    Full text link
    We present a statistical model for 33D human faces in varying expression, which decomposes the surface of the face using a wavelet transform, and learns many localized, decorrelated multilinear models on the resulting coefficients. Using this model we are able to reconstruct faces from noisy and occluded 33D face scans, and facial motion sequences. Accurate reconstruction of face shape is important for applications such as tele-presence and gaming. The localized and multi-scale nature of our model allows for recovery of fine-scale detail while retaining robustness to severe noise and occlusion, and is computationally efficient and scalable. We validate these properties experimentally on challenging data in the form of static scans and motion sequences. We show that in comparison to a global multilinear model, our model better preserves fine detail and is computationally faster, while in comparison to a localized PCA model, our model better handles variation in expression, is faster, and allows us to fix identity parameters for a given subject.Comment: 10 pages, 7 figures; accepted to ECCV 201
    • …
    corecore